Mingjie Bi

☑ mingjieb@umich.edu 📞 +86 18953145865 🔗 Website 😗 Google Scholar in LinkedIn 🕠 GitHub

EDUCATION

Ph.D. University of Michigan

Ann Arbor, MI, USA | 2020.8-2023.8

- Robotics (GPA: 3.984/4.0): Smart Manufacturing, Industrial Robotics, Optimization, etc.
- Thesis: Distributed Decision-making in Disrupted Industrial Environments using a Multi-agent Framework

M.S.E. University of Michigan

Ann Arbor, MI, USA | 2018.8-2020.4

• Mechanical Engineering (GPA: 3.978/4.0): Control Theory, System-Level Control, etc.

B.S. Huazhong University of Science and Technology (HUST)

Wuhan, Hubei, China | 2014.9-2018.6

• Marine Engineering (GPA: 3.91/4.0): Autonomous Underwater Vehicle, Multi-ship Formation Control, etc.

KNOWLEDGE & SKILLS

- **Expertise**: Distributed AI, Multi-agent Systems, Deep Learning, MARL, LLM, Agent-based Simulation, Operations Research, Optimization, Risk Management, Smart Manufacturing and Supply Chain, Industrial Robotics
- Programming: Python, Java, MATLAB/Simulink, C/C++, Ladder logic
- Software/Tools: PyTorch, RepastS, Gurobi, TensorFlow, SolidWorks, ROS, Adams, AutoCAD
- Language: Mandarin (Native), English (Proficient)

WORK EXPERIENCE

Beijing Institute for General Artificial Intelligence, Research Scientist

Beijing, China | 2024.2-Now

- Developed an itinerary generation model driven by human intentions and value preferences, leveraging analysis of human behavioral data.
- Built a multi-agent simulation environment, *AdaSociety*, that explicitly represents agent social relationships, supporting research on social structure dynamics with RL and LLM.
- Participated in drafting national-level project proposals with a total funding exceeding 100M CNY, and coordinated with partner organizations.
- Served as a co-advisor for two PhD students in collaboration with top universities, guiding research in AI and multiagent systems.

Hitachi America Ltd., Smart Manufacturing Researcher

Farmington Hills, MI, USA | 2023.7-2023.12

- Developed Manufacturing Execution System (MES) for battery manufacturing line using Ignition
- Designed a human behavior recognition algorithm using LSTM and CNN with IMU and pressure data from wearable gloves for operation completeness verification.

SELECTED PUBLICATIONS

- J.-A. Estrada-Garcia, *M. Bi*, D. M. Tilbury, K. Barton, and S. Shen, A Lead-Time-Aware Decomposition Approach to Optimize Disruption Response in Supply Chains. *IEEE T-ASE*, 2025.
- B. Fu, *M. Bi*, S. Umeda, T. Nakano, Y. Nonaka, Q. Zhou, T. Matsui, D. M. Tilbury, K. Barton, Digital Twin-based Smart Manufacturing: Dynamic Line Reconfiguration for Disturbance Handling. *IEEE T-ASE*, 2025.
- Y. Huang, X. Wang, H. Liu, F. Kong, A. Qin, M. Tang, S.C. Zhu, **M. Bi**, S. Qi, X. Feng, AdaSociety: An Adaptive Environment with Social Structures for Multi-Agent Decision-Making. *38th NeurIPS*, 2024.
- *M. Bi*, J.-A. Estrada-Garcia, D. M. Tilbury, S. Shen, and K. Barton, Heterogeneous Risk Management Using a Multi-agent Framework for Supply Chain Disruption Response. *IEEE RA-L*, 2024. 🗹
- *M. Bi*, D. M. Tilbury, S. Shen, K. Barton. A Distributed Approach for Agile Supply Chain Decision-Making Based on Network Attributes. *IEEE T-ASE*, 2023.
- J.-A. Estrada-Garcia, *M. Bi*, D. M. Tilbury, S. Shen, and K. Barton, A multi-objective mixed-integer programming approach for supply chain disruption response with lead-time awareness. *IEEE 19th CASE*, 2023.
- *M. Bi*, I. Kovalenko, D. M. Tilbury, K. Barton. Dynamic distributed decision-making for resilient resource reallocation in disrupted manufacturing systems. *IJPR*, 2023.
- I. Kovalenko, J. Moyne, *M. Bi* et al., Towards an Automated Learning Control Architecture for Cyber-Physical Manufacturing Systems. *IEEE Access*, 2022.

- *M. Bi*, G. Chen, D. M. Tilbury, S. Shen, K. Barton. A Model-based Multi-agent Framework to Enable an Agile Response to Supply Chain Disruptions. *IEEE 18th CASE*, 2022.
- *M. Bi*, I. Kovalenko, D. M. Tilbury, K. Barton. Dynamic Resource Allocation Using Multi-Agent Control for Manufacturing Systems. *MECC*, 2021.

RESEARCH EXPERIENCE

A Model-based Multi-agent Framework for Agile Response to Supply Chain Disruptions

2021.9-2024.9

Independent Research, Advisors: Profs. Kira Barton and Dawn M. Tilbury

Ann Arbor, MI, USA

- Developed a model-based multi-agent framework and heuristic-guided communication algorithms to conduct MILP optimization for re-planning of unexpected disruption response in supply chain networks.
- Implemented the framework using Python and achieved an 85% reduction of computational efforts with only a 4% loss of optimality compared with centralized methods.
- Designed heterogeneous risk management using stochastic programming in uncertain supply chain environments.

Dynamic and Resilient Resource Reallocation in Multi-Agent Manufacturing Systems

2019.2-2022.3

Independent Research, Advisors: Profs. Kira Barton and Dawn M. Tilbury

Ann Arbor, MI, USA

- Modified PLC and JADE implementation to achieve multi-agent control for a manufacturing testbed
- Designed a capabilities-based clustering scheme and risk assessment mechanism for resource agent coordination rescheduling after resource breakdown in dynamic stochastic manufacturing environments
- Programmed the methods in RepastS using Java and demonstrated an 11% improvement in throughput recovery and a 50% reduction of occurred disruptions.

Hydrodynamics Analysis and Computation of Underwater Dual Manipulators

2018.1-2018.7

Independent Research, Advisors: Prof. Xianbo Xiang

Wuhan, Hubei, China

- Built the 3D model of an underwater vehicle/manipulator system (UVMS) using SolidWorks and conducted its dynamic simulation using Adams
- · Proposed a method of calculating driving torque combining hydrodynamic model and simulation results

OTHER PROJECTS & COURSE WORK _

Visual-Inertial SLAM with Right Invariant EKF, Course

Ann Arbor, MI, USA | 2021.1-2021.4

- Modified an existing visual-inertial SLAM algorithm with a Right-Invariant Extended Kalman Filter
- Succeeded in vehicle state estimation through the implementation using Python in ROS

Comprehensive Acting, Sensing, and Reasoning for Autonomous Robots, Course Ann Arbor, MI, USA | 2020.1-2020.4

- Implemented PID controller and reference tracking algorithms on a Balancebot, using C
- Conducted manipulator modeling and motion planning for object detection and grasping, using Python
- Achieved robot action and sensor modeling, SLAM, and path planning with map exploration, using C++

Trajectory Planning for Autonomous Vehicles: An MPC Application, Course Ann Arbor, MI, USA | 2019.8-2019.12

- Proposed a constraint switching mechanism based on vehicle position for the MPC reference tracking problem
- Realized reference tracking in a simulation by solving MPC problem considering vehicle model

Motion Planning and Control for Autonomous Robots, Course

Ann Arbor, MI, USA | 2018.8-2018.12

- Conducted forward and inverse kinematics modeling of a robot manipulator (Fetch)
- Applied A* and RRT for robot motion planning with collision avoidance, using JavaScript

SELECTED HONORS & AWARDS

Best Conference & Application Award Finalist, IEEE CASE	2022 & 2023
Rackham Conference Travel Grant, University of Michigan	2021 & 2022
Outstanding Graduates, HUST	2018
National Scholarship, Ministry of Education of the People's Republic of China	2016 & 2017
Merit Student, HUST	2016 & 2017
Best Application and Creativity Award, National Marine Vehicle Design and Production Contest	2017
First Prize in Hubei Province, Challenge Cup	2017
Second Prize in China, Challenge Cup	2017
Excellent Student for Academic Performance, HUST	2016
Naval Architecture and Ocean Stars Scholarship, HUST	2016

LEADERSHIP & ACTIVITIES

Paper Reviewer, Academic community

2021.5-Now

• IEEE Access (10), IEEE T-ASE (2), IEEE RA-L (2), NeurIPS (2), CASE (6), MECC (2)

Poster presentation, Midwest Workshop on Control and Game Theory

2023.4

• Distributed decision-making in disrupted industrial environments using a multi-agent framework

Member, Robotics Graduate Student Council, Robotics Department, University of Michigan

2020.9-2023.8

• Awarded Robotics Outreach Ambassador

President, Student Union, School of Naval Architecture & Ocean Engineering, HUST

2014.12-2016.12

• Awarded Outstanding Student Union in HUST (1/77), which was the first time in 6 years